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Measurements of Rayleigh numbers R and Nusselt numbers N have been made for a 
cylindrical cell having a radius to height ratio of 4.72 and containing liquid helium I. 
The upper surface of the cell was maintained a t  a constant temperature Ta near 
To = 2- 178 K where the fluid density has a maximum. The heat input to the cell bottom 
was varied quasi-statically while the lower surface temperature Tl was recorded. The 
penetration parameter B = (Tl-T2)/(T1-To) ranged between 0.1 and 3 for our 
experiments. 

For B < 1, the initial slope of N ( R )  for R near the critical Rayleigh number R, waa 
independent of 9. For B 7 1, two hysteresis loops of N(R) were observed. One of 
them occurred very near R, and is interpreted in terms of the inverted bifurcation 
associated with the onset of cellular convection of non-Boussinesq systems. The other, 
for R > R,, is believed to correspond to the transition from cellular to two-dimensional 
flow. Near R, and with B > 2 we also observed multistability, with the states believed 
to correspond to different numbers of convective cells. 

For large B the onset of time-dependent flow occurred much closer to R, than is 
the caae for Bousainesq systems. 

1. Introduction 
Experimental studies of convection in fluid layers contained between horizontal 

parallel plates and heated from below have concentrated primarily upon systems 
which come close to satisfying the approximation of Oberbeck (1879) and of Boussinesq 
(1903) (OB). In  that approximation, the temperature dependences of fluid properties 
are neglected, except for thermally induced density differences when they induce 
buoyant forces. Of those few experimental studies which were devoted to non-OB 
systems, the work of Somerscales & Dougherty (1970), Hoard, Robertson & Acrivos 
(1970), Richter (1978), Dubois, Berge & Wesfried (1978) and Ahlers (1980) are parti- 
cularly notable; but these investigations either have been of a qualitative nature and 
have concentrated upon visual observations of convection flow patterns, or have been 
limited to a narrow range of the parameters which describe the departures from the 
OB approximation. In  particular, there have been no systematic quantitative memure- 
ments of the two hysteresis loops associated with the inverted bifurcations near the 
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convection onset which are predicted to exist in non-OB systems (see, for instance, 
Busse 1967). The present paper covers a wide range of departures from the OB approxi- 
mation, and includes a, systematic study of the sizes and nature of the predicted 
hysteresis loops. 

There have been several theoretical investigations of the effect of departures from 
the OB approximation (Palm 1960; SegeI & Stuart 1962; Segel 1965; Palm, Ellingsen 
& Gjevic 1967; Busse 1967; Davis & Segel 1968). Of these, the work of Busse (1967) 
appears most complete in the sense that it considers the effect of temperature variations 
in all relevant fluid properties, and the effect of finite Prandtl numbers r upon the 
problem. We will therefore compare our results primarily to the predictions of Busse. 

The theoretical predictions for non-OB convection pertain to a system of infinite 
lateral extent. For that case, there should be a range near R, where three-dimensional 
flow in the form of a, hexagonal pattern is stable. Further above R,, it is expected that 
two-dimensional flow in the form of straight rolls is stable. Clearly, this situation 
cannot pertain in detail to our experimental cell, which is of finite lateral extent and 
of cylindrical symmetry. We, therefore, cannot a priori expect a direct correspondence 
between the predictions of Busse (1967) and our experimental results. None the less, 
we find that our experimental data are described remarkably well by the predictions 
of Busse. 

The working fluid used in our investigation was liquid 4He at saturated vapour 
pressure and a t  temperatures above the super-fluid transition temperature 

TA = 2.1720 K 

where 4He obeys the usual laws of classical hydrodynamics. We chose temperatures 
near To = 2.178 K where the liquid density has a maximum. By adjusting the tem- 
perature T, a t  the top of the fluid to a value close to but greater than To, the thermal 
expansion coefficient ap was kept positive but varied considerably over the height 
of the fluid layer. Thus, in this investigation the source of departures from the OB 
approximation was primarily the temperature dependence of ap. The extent Q (as 
defined by Busse 1967; see also Ahlers 1980) of departures from the OB approximation 
could be adjusted by varying T, in the range T, 3 To (see figure 1) and covered the 
range from Q = - 0.2 for relatively high T, to Q 2 - 7 for T, 2 To. It is for this range 
of parameters that we can expect the theory of Busse (which for laterally infinite 
systems is expected to be exact in the limit of small Q) to be applicable. 

The experiments were extended further by permitting T, to be less than To (see 
figure 1). In that case, the fluid near the top of the cell has ap < 0 and by itself would 
be stable in the gravitational field. Convection will, however, start in the unstable 
lower fraction of the cell where ap > 0, and the flow will tend to penetrate into the 
upper layer where ap < 0. Although this region of penetrative convection does not 
necessarily differ in a fundamental way from the non-OB convection considered by 
Busse (1967), we do not expect the predictions to be quantitatively applicable in the 
region of strong penetration because the expansion parameter Q of the theory becomes 
large. In  fact, Q diverges when the static temperature Ta at the mid-plane of the cell 
is equal to To. Thus, it is more convenient to discuss the extent of penetrative convec- 
tion in terms of a different parameter, which we call 9, and which is essentially equal 
to the ratio of the cell height to the height of the unstable (lower) layer where ap > 0. 
Penetrative convection thus corresponds to B > 1.  Our investigation covers the 
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FIGURE 1. Experimental temperatures at the onset of convection. TI and TI are the temperatures 
at the bottom and top of the cell respectively. The thermal expansion coefficient vanishes for 
T = To. T8,, and T, are the static temperatures at the horizontal midplane of the convection 
chamber and of the unstable fluid layer respectively (of. figure 12 below). The shaded region 
denotes the unstable portion of the fluid layer before convection begins. 

range up to B N- 3. There have been several theoretical investigations of penetrative 
convection (Veronis 1962; Musman 1968; Moore & Weiss 1973; Merker, Waas & 
Grigubb 1979); but these theories either neglect the nonlinear terms altogether and 
thus predict only R,, or assume boundary conditions at the top and bottom of the cell 
which are unrealistic for the experimental system. In addition, the calculations were 
done primarily for the case of water which has a Prandtl number an order of magnitude 
greater than our fluid. For these reasons a quantitative comparison with our results 
is not particularly fruitful, except for the critical Rayleigh number R,, which is not as 
sensitive to some of the approximations in the theory. 

The remainder of this paper is divided into the following sections. In $ 2  we will 
review very briefly the experiment. A detailed description of the apparatus will be given 
elsewhere (Behringer & Ahlers 1982, hereafter referred to as I). Section 3 summarizes 
briefly the theoretical predictions by Busse (1967) for moderately non-OB systems, 
and mentions previous experiments. A more detailed summary of the predictions is 
given by Ahlers (1980). In  0 4 we present our results for non-OB systems in the range 
of Q where we can reasonably expect the expansion in Q to be valid. We find that the 
initial dependence of N upon R above R, is independent of Q within our resolution, 
consistent with the prediction. However, we find that our data for Re(&) suggest a 
linear dependence R, = R,( 1 - 0.0051Q1). The earlier data by Ahlers (1980) covered a 
narrower range of IQl and had more scatter, and were consistent with R, independent 
of Q; but they too suggest a slight decrease of R, with increasing IQl . We had expected 
the theory (Busse 1967) to be correct to first order in Q, and thus had anticipated only 
terms of O(Q2) for R,(Q). Wealsopresent results forthesizes of thehysteretic transitions 
which occur near R, between hexagonal (three-dimensional) flow, roll (two-dimensional) 
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flow, and the conducting state. The sizes of the measured hysteresis loops are remark- 
ably consistent with Busse’s (1967) prediction. In  $ 5  we mention briefly various 
theoretical attempts to discuss penetrative convection, and previous experimenta for 
this range of parameters. Section 6 contains our experimental results for penetrative 
convection ( I & /  2 7). In the range of strong penetration the theory of Busse (1967) 
is not quantitatively applicable; but we expect that the qualitative prediction of the 
existence of two hysteresis loops should remain valid. Indeed, we were able to resolve 
and measure the size of both hysteresis loops, even in the case of strong penetration. 
In  the region of strong penetration we find multistability in the three-dimensional 
flow regime, and interpret it to correspond to different numbers of flow cells in our 
sample of finite lateral extent. In  $ 7 we make some general remarks about our obser- 
vations regarding time-dependent states observed during this work, and $ 8 sum- 
marizes our findings. 

Some of the results presented in this paper have been reported briefly elsewhere 
(Walden & Ahlers 1979). 

2. Apparatus and fluid properties 
The apparatus will be described in detail in I. The working fluid for the measure- 

ments reported here was liquid 4He at vapour pressure. It was contained in a cylindrical 
cell (cell A of I) with a height d = 0.2649 f 0-002 cmand diameter D = 2-502 f 0.002 cm 
(aspect ratio L = D/2d equal to 4-72). The top and bottom boundaries were isothermal 
copper plates having a thermal relaxation time of s. The walls were constructed of 
0.013-cm-thick stainless steel. All heat conductivity measurements were corrected 
for wall heat conduction (see I). 

The effective thermal conductivity heft was determined by imposing a time- 
independent heat current q and measuring the temperature increase of the bottom 
plate while holding constant the temperature of the top plate. One can express heif 
in terms of the Nusselt number N 5 h,,,/h, where h is the thermal conductivity of 
the fluid at  rest. For the laterally infinite system N is a function of two dimensionless 
parameters, the Rayleigh number 

R = gap(Tl-T2)d3/KV 
and the Prandtl number 

CT = V / K .  

Here g is the gravitational acceleration, ap the isobaric thermal expansion coeficient, 
v the kinematic viscosity, K the thermal diffusivity, and Tl and T2 are respectively the 
temperatures at  the bottom and top of the cell. For the finite system, N depends also 
upon L (Charlson & Sani 1970; Behringer & Ahlers 1977; Ahlers et al. 1981). Para- 
metrizations of the fluid properties used in our calculations are taken from I. 

Liquid 4He at  saturated vapour pressure has a density maximum a few millikelvins 
above the superfluid transition (To = 2.178 K at ap = 0). Below the superfluid transi- 
tion, heat transport occurs by superfluid counterflow such that VT = 0 for moderate 
heat input, and classical convection does not occur. The range of experimental con- 
ditions which we explored is illustrated in figure 1.  The Prandtl number CT is nearly 
constant and close to 0.78 in this range. 

It is worth emphasizing that any spontaneous transitions from an unstable to a 
stable state will not follow a path of constant R (or AT) in our experiment because of 
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the constaint of constant q. Instead, the transitions will follow sloping lines in the 
N-R plane, such as those in figures 9 and 17 below. 

3. Non-Boussinesq convection, predictions and previous experiments 
Busse (1967) introduced the parameter 

4 

1=0 
& =  r, 7t5 

to  describe the extent of departures from the Oberbeck-Boussinesq approximation.t 
Here 

\ (3.2) 
7 0  = - ( P 1 - P a ) / P ,  71 = ( a p 1 - a p 2 ) / 2 a p ,  

7 2  = ( ~ 1 -  FJ/Y,  3/3 = ( ~ 1  -KJ /K ,  7 4  = CC,, - ~ p 2 ) / c p J  

where p is the density, and C, the heat capacity at constant pressure. Fluid properties 
with subscripts 1 and 2 are to be evaluated for temperatures T1 and T2 at the lower 
and upper fluid boundaries respectively. The unsubscripted properties are evaluated 
at the static temperature at the horizontal midplane of the fluid layer. Values of 
&, which are functions of cr, are given by Busse (1967). B u m  predicted that the 
critical Rayleigh number R, and the initial dependence of the Nusaelt number upon 
Rayleigh number for R > R, are not influenced to first order in Q by non-OB effects, 
provided R is evaluated at Td. Measurements by Ahlers (1980) over the range 0 < Q < 2 
are consistent with this prediction. 

For an OB system, theory (e.g. Schluter, Lortz & Busse 1965; Busse 1967) predicts 
and experiments (cf. Normand, Pomeau & Velarde 1977; Koschmieder & Pallas 1974; 
Koschmieder 1974) confirm that buoyancy-driven convection is initiated with a 
pattern of two-dimensional rolls at the critical Rayleigh number R,. In that case, the 
instability occurs via a normal bifurcation. However, when departures from the OB 
conditions are introduced into the stability analysis (Busse 1967; Palm 1960; Segel & 
Stuart 1962; Segel 1965; Palm et al. 1967; Davis 6 Segel 1968), there is a finite range 
of Rayleigh numbers near the onset of convection for which the flow pattern consists 
of hexagonal cells. The instability at R, then is an inverted bifurcation, and the 
flow evolves at R, with a finite amplitude and in a hexagonal pattern. This is illustrated 
schematically in figure 2 .  With increasing R, the hexagons are stable for R < R,, 
where Rb > R,. With decreasing R,  hexagons remain stable for R > R,, where R, .c R,. 
For R < R,, the hexagons decay to the conducting state. For R > R,, hexagons be- 
come unstable and finite-amplitude rolls will evolve. Upon decreasing R, the rolls 
remain stable for R > R,, and there is a region of bistability between R, and Rt. 
Values of R,, R,, and R, have been calculated by Busae (1967) for a laterally infinite 
system and are given by 

( 3 . 3 ~ )  (R, - R,)/Q2 = - R#“/4, 

and 
(R, - R,)/Q2 = (9RF) - 3L2)/L% 

(R, - R,)/Q2 = 3Rp’/L;, 

(3 .3b)  

(3.3c) 

where RP’,  R P ) ,  and L, are weak functions of the Prandtl number. Appropriate values 
for our experiments were obtained from Busse (1967) by Ahlers (1980). 

t Our parameter Q is the same as Busse’s (1967) P.  
4-2 
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FIQURE 2. Schematic illustration of the hysteretic transitions between pure conduction and 
two-dimensional and three-dimensional convective heat transport (see text). The drawing is 
exaggerated for clarity - typically (R, - R,) : (R, - R,) : (Rb - R,) = 1 : 26 : 100 in the range of our 
experiments. 

Several visual experiments (Silveston 1958; Koschmieder 1966; Somerscales & 
Dougherty 1970; Hoard et al. 1970) in cylinderical test chambers with high-Prandtl- 
number fluids have tended to confirm qualitatively these predictions, except that 
hysteresis between R, and R, was not observed. However, it appears that variations 
in the thermal and physical boundary conditions and the rate of temperature change 
in some of these experiments significantly affected the observed flow evolution. 
Somerscales & Dougherty (1970) reported circular rolls at the onset of convection for 
small &; but for Q > 1.5 the initial flow was in the form of hexagonal cells. Krishna- 
murti (1968) showed that changing the mean fluid temperature at  a constant rate, 
and thus introducing a nonlinearity into the conductive temperature profile, also pro- 
duced a flow pattern of hexagons near R,, whereas with constant mean temperature 
two-dimensional rolls appeared at the onset of convective flow. 

Richter (1978) has studied the effect of strong variations in the viscosity on convec- 
tion in containers of large lateral extent. He finds flow in the form of hexagons imme- 
diately above R,, but has not studied quantitatively the range of existence of this 
three-dimensional flow state. 

Dubois et al. (1978) have reported local measurements of the fluid velocity in a water 
layer whose top temperature is maintained constant near the density maximum a t  
4 "C. Convection is initiated a t  R, with a jump to finite flow velocity in a pattern of 
hexagonal cells. Increasing R, then decreasing R again to R, carries the system 
through a hysteresis loop between hexagons and rolls, qualitatively like that illustrated 
in figure 2 between R, and Rb. However, Dubois et al. did not have sufficient resolution 
to observe the expected hysteresis between onset of convection at  R, and its cessation 
at  R, < R,. 

An interesting recent study using wator between 0 "C and 4 "C has been reported 
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RIRc 
FIQURE 3. Nusselt number as a function of the reduced Rayleigh number R/R,. Q, = - 3.77, 
9 = 0.75. Hysteresis between three-dimensional convection (lower branch) and two-dimensional 
rolls (upper branch) is observed. 

by Azouni & Normand (1981); but this work was for aspect ratios of order unity and 
less, and the qualitative behaviour of the system was determined by the boundaries. 
This work therefore makes relatively little contact with our own results. 

4. Results for non-Boussinesq convection 
In  this section we present those of our results which can reasonably be expected to 

fall into the range of applicability of the predictions by Busse (1967). That range 
apparently corresponds to Q2 -g R, (Ahlers 1980), and thus IQI  < 40 (R, = 1708 for 
the laterally infinite system). We would therefore expect the entire range of non- 
penetrative convection (i.e. ap 2 0 throughout the cell), which has I&[ < 6.63, to be 
suitable for comparison with the theory. We will, however, present some results also 
for larger I 91, keeping in mind that deviations from the theory may occur as I &I grows. 

For all data reported in this section, Rayleigh numbers were evaluated at the static 
temperature T& at the horizontal mid-plane of the cell (Busse 1967; Ahlers 1980). 

The general features for non-penetrative convection are illustrated by the results 
shown in figure 3. A hysteretic transition, presumed to be between three-dimensional 
and two-di mensional convection flow,? is resolved for IQ,I 2 2 (&, is the value of Q 
when R = R,). The upper limit of the hysteresis loop occurs at a value of E = R/R,- 1 
which we associate with Rb (figure 2), and which grows with increasing IQ\ 

t Although we have no visual observations of the flow geometry, we shall refer to the two 
states evident from figure 3 as hexagonal and roll flow. 
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Penetration parameter , l l b 5 ,  I , , I;o 1;2 , 1: 1;s , 

I I I I I 
-5 -10 -15 -20 -25 

Q, (departure from OB approximation) 

R a m  4. (a) Critical Rayleigh numbera R, am a function of Q,. The value of Q, ia a measure of 
the extent of departures from the Oberbeck-Boueaineaq approximation. (b) Critical temperature 
difference AT, as a function of Q,. 

approximately as Q8, as expected from (3.3b).We will now discuss thecriticalRayleigh 
numbers, the initial slope of the Nusselt numbers, and the sizes of the hysteresis loops. 

For our finite OB systems, we expect a bifurcation from the conducting to the 
convecting state at 

( 4 4  R, = Rg( 1 + , ) y  

where e, depends upon L (Charlson &, Sani 1970; Brown & Stewartson 1978; Ahlers 
et al. 1981). The results for I$(&,) with I&,[ < 26 are collected in figure 4a, and should 
extrapolate to R, at Q = 0. The corresponding values of the temperature difference 
AT, when R = R, are shown in figure 4 (b). Within our resolution, R, can be described 
by a linear function of Q,, as illustrated by the solid line in figure 4 (a). In  the limit of 
vanishing Q,, the data yield R, = 1600; but this value is subject to considerable 
systematic errors due to systematic uncertainties in the fluid properties and in the 
height of the convection cell. A comparison with the theoretical estimates is given in I, 

The Gnite slope of B,(Q,) near Q, = 0 is contrary to the theoretical prediction for 
the laterally infinite system (Busse 1967) which implies deviation of R, from R, to 
be of O(Q*). Of course, we do not know whether a theory for the finite system might 

€2. W. WaMm and GT. Ahlere 
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FIQTJRE 6. Critical Rayleigh numbers R,, normalized by the vdue of R, for Boussinesq  system^, 
aa a function of Q,. 0, Ahlers 1980; 0,  this work. 

yield terms of O(&). On the experimental side, we are unable to determine with absolute 
certainty that temperature-dependent systematic errors in the fluid properties used 
to obtain R,(Q,) are sufficiently small to rule out an R,independent of Q,. As an example 
of the sensitivity of R,(Q,) to the details of the data analysis we mention that the slope 
of R,(Q,) increases by a factor of 3 if the fluid properties at *(TI + T,) are used instead 
of at  T,. 

The earlier results of Ahlers (1980) had not revealed a &-dependence of R,. In order 
to compare our data with them, we show in figure 6 RJR, on an expanded vertical 
scale for lQcl < 8. The normalization by R, largely eliminates different systematic 
errors for the two data sets from the comparison. The earlier data have more scatter 
and do not by themselves establish a &-dependence of R,; but they are consistent with 
the Q-dependence shown by the solid line in figure 6 and tend to support a mildly &- 
dependent R,. 

The solid line in figure 3, labelled OB, represents a lea.&-squares fit over the range 
1.008 < R/R, < 1.1 1 to data for Qc = - 0.19 from I. In spite of the inverted bifurca- 
tions near R,, the initial E-dependence of N for the rolls is unaltered within experimental 
resolution by the non-OB character of the sample. This is demonstrated in more detail 
in figure 6, where we show (N - l ) / E  for three values of Q,. For the purpose of this 
figure, I was based on values of Rc derived from leaat-squares fits to the roll data. 
We see that (N - l ) / E  is nearly constant and independent of &, for Q, as large as - 4 
for both hexagons and rolls. Ahlers (1 980) reported similar observations for rolls and 
positive Q, up to 2. The absence of a &-dependence of the initial slope of N(R) for the 
rolls agrees with the prediction of Busse (1967) for the inh i te  system. For the hexa- 
gons, the theory for the infinite system predicts that ( N -  l ) / E  should diverge a t  
Z = 0 because N - 1 is non-zero (see figure 2). This is illustrated in figure 7, where the 
predicted convective heat transport (N - 1) R/R,, divided by E ,  is shown as a function 
of R/R,. The solid line is for rolls, except that the parameter Rflt") of Busse (1967) was 
changed from the theoretical value to fit the experimental values of N(R). The dashed 
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FIGURE 6. The 'dope' of N(R/R,) aa a function of reduced Rrtyleigh number R/Ro for three 
values of Q,. The value of Q, is a measure of the extent of departures from the Oberbeck- 
Boussinesq approximation; B is the penetration parameter. Transitions from three-dimensional 
to two-dimensional convective patterns are identified as R,. 0, (Q, = - 1.96, B = 0.60) ; 0, 
( -  2.68, 0.62) ; ., (- 3.77, 0.75). 

0.6 
I I 1 
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FIUUEE 7. Theoretical prediction for (N - 1) (R/R,)/(R/R, - 1) for rolls (solid line) and hexagons 
(dashed line). Qo = -3.77. Parameters in the theory were adjusted to fit the data in figw% 6 
at  large RIR,. The shape of the dashed line is inconsistent with the hexagon data in figure 6. 
ConeiStency can be obtained by a small shift in Re for hexagons relative to R, for rolls, aa illus- 
trated by the dash-dotted line. 

line is the prediction for hexagons with Q = - 3-77, but with RgaO, of Busse (1967) 
adjusted to fit the exprimental values of N ( R )  a t  large R. Clearly, the data for hexa- 
gons with Q, = - 3.77 in figure 6 do not agree with the dashed line. However, we can 
bring the prediction into agreement with the data by assuming slightly different shifts, 
by increments ecR and e,., of R, from R," for rolls and hexagons respectively. In  
particular, by assuming ecH - ecen = 0.01, we obtained the dash-dotted line in figure 7. 
That line is consistent with the hexagon data for Q, = - 3.77 in figure 6. 

In order to present our results in a more quantitative way, we fitted the data for 
the rolls over the appropriate range (see Ahlers 1980) to the equation 

n 

i= 1 
N - l =  ENiE'. 

Here E E R/R,- 1. Both R, and the Ni were adjusted. The results are summarized in 
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2.18409 
2.18224 
2.18117 
2-17987 
2.17948 
2.17908 
2.17869 
2.17828 
2-17790 
2.17749 
2.17670 

600 
762 
911 

1240 
1398 
1689 
1837 
2166 
2616 
2989 
4080 

-0.19 , - 0.39 
- 0.66 
- 1-48 - 1-96 
- 2-88 
- 3.77 
- 6.60 
- 7.83 
- 11.68 
- 24-18 

1699 
1611 
1697 
1684 
1683 
1671 
1666 
1662 
1640 
1614 
1416 

0.77 
0.82 
0.81 
0.81 
0.80 
0.7 1 
0.66 
040 

0.40 
- 
- 

0.82 
0.84 
0.78 
0.87 
0.78 
0-88 
0.84 
0.80 

0.76 
- 
- 

TAB= 1. Experimentd conditions and derived parameters. 
The penetration pmmeter 9 is dehed in the text. 

9, 
0.091 
0.166 
0.228 
0-41 1 
0.602 
0.616 
0.766 
0.921 
1.103 
1.286 
1.676 

TI 
(I0 

2.17790 
2.17749 
2.17670 
2.17616 
2.17436 
2.17397 
2.17368 
2.17318 
2.17279 
2.17240 

2616 
2989 
4080 
6666 
7829 
8463 
9086 
9703 

10362 
11026 

9 0  

1.103 
1.286 
1.676 
1.949 
2.1 1 1 
2.198 
2.294 
2.41 7 
2.682 
2.874 

'%T 

0.0016 0.0037 
0.0049 0.0126 
0.0106 0.044 
0.01 13 
0.0097 
0.0097 
0.0084 
0.0070 
0.0062 
0.0049 

TABLE 2. Amplitude of hysteresis at the onset of convection. 

table 1 for n = 1 and 2 (larger n gave parameters similar to n = 2). Even for lQcl > 10, 
in which case rolls are observed only outside the range of figure 6, the slope determined 
from the roll data and with n = 2 differs by only about 6 yo from the OB value. 

Schluter et d. (1965) have calculated the values of the initial slopes for the laterally 
infinite system. For Q = 0.78 the predicted slopes are 1.414 for straight rolls and 
0.936 for hexagons. The experimental results, from figure 6, are 0.82 and 0.69 respec- 
tively. They are smaller than the theoretical results because of the cylindrical boun- 
daries of the experimental cell (Behringer & Ahlers 1977; Ahlers 1980; Ahlers et al. 
1981). Although the depression of Nl below the value of the laterally infinite system is 
readily understood in terms of the boundaries, one might have expected the ratio of 
the initial slopes for rolls and hexagons to be nearly unaltered by the lateral boundaries 
of the system (Ahlers et al. 1981). For the infinite system, the theoretical ratio is 1.47, 
whererts the experiment yields the considerably smaller value 1.17. We do not have 
a firm explanation for this, but consider it possible that the small experimental ratio 
is due to differences in the boundary conditions at the convection chamber centre for 
hexagons and rolls (see Ahlers et al. 198 1). 
As a lrtst topic in this section, we turn to our results for-the sizes of the hysteresis 

loops. Figures 3 and 6 illustrate our observation of Zb E (R, - &)/Re (for the purpose 
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RIR, 

FIGURE 8. Nusselt number a8 a function of reduced Rayleigh number R/R,.  &, = - 11-88, 
9 = 1.29. The diagonal bars indicate the range of excursions for time-dependent convection. 

of those data the suggested 1 yo difference in R, for hexagons and rolls is insignificant). 
It is evident from figure 3 that the hexagon and roll data come rather close to each 
other as E decreases and that i t  is not possible to observe the transition a t  R, for that 
remon in this range of &. For larger Q, we could resolve both Rr and Rb. This is shown 
in figure 8 for Q, = - 11-68. The very tiny hysteresis loop between R, and R, could be 
resolved in our measurements only for I&,\ 2 7.8, that is only in the region of pene- 
trative convection. A number of examples are illustrated in figure 9. All the data for 
4, $, and E, with IQ,l Q 28 are collected in figure 10. The solid lines in this figure corres- 
pond to the predictions (3.3a)-(3.3c) for the laterally infinite system. For 4, most of 
the experimental points are only about 10 yo lower than the theoretical values. The 
result at the highest IQ,] (&, = - 11.68) has nearly equal to 1, and may well be low 
compared with the theory because both Q, and E must be sufficiently small for the 
theory to apply. On the other hand, it is possible for the experiment to yield low 
results because a finite-amplitude experimental perturbation can cause a transition 
from hexagons to rolls in a range of B < 3. This is illustrated by the two points in 
figure 10 at Q, = -5.5.  The data which resulted in those values of Eb are shown in 
figure 11. In that case, three distinct states, labelled (a), (b), and (c), were revealed by 
the measurements. Transitions from (a) to (c) were observed, during separate experi- 
mental runs, at  the values of R/R, indicated by t,  and t, in the figure. The corresponding 
values of are shown in figure 10. The transition at t, agrees well with the theoretical 
curve, and presumably is close to the upper limit of the stability range of hexagons. 
The transition at t ,  was premature, and we presume that it was caused by a finite- 
amplitude perturbation of unknown experimental origin. 

The state (a) in figure 11 could always be obtained by slowly increasing the heat 
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FIGURE 9. Hysteresis loops at the onset of convection. Nueselt numbers aa a function of reduced 
temperature differences AT/AT,. (a) B = 1.29. ( b )  B = 1.96. (0) B = 2.29. (d)  B = 2.87. 

current p (over a period of many hours) from below to above the critical heat current 
qc for onset of convection. The state (b) wm created by a, discontinuous jump in p 
from q c qc to q 1*3q,. We believe that state (b) corresponds to a three-dimensional 
flow, but with a, characteristic wave vector different from that for state (a). State (b) 
also decayed to state ( c ) ,  and the N(R)data for state(c)are consistentwiththe rolldata 
at other values of Q,. The transition from (b) to (c) occurred at ta, corresponding to a 
value of Eb greater than the point shown in figure 10. 

For E,., we obtained only one value, corresponding to Qc = - 11-68 and the data in 
figure 8. For smaller Q,, we were unable to observe the transition because the associated 
jump in N was too small, and for more highly penetrative systems (figure 13 below) 
&, is no longer a meaningful parameter. The one point in the range of interest, shown 
as a solid circle in figure 10, is only 18 % smaller than the theoretical value. 
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FIQURE 10. Values of E = R/R,- 1 at the hysteretic transition points R,, R,, and Rb (see 
figure 2), as a function of Q, on logarithmic scales. The symbols are experimental data, and the 
solid lines are theoretical results from Busse (1967). The dashed line is the prediction for 8,, 
with a parameter in the theory adjusted so as to fit the experimental N(R)  of our finite system. 
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FI~XJRE 11. Nuseelt number aa a function of reduced Rayleigh number RJR,. 
4” = 0.92. Transitions from convective states (a) and (a) to state (c) are identified b, Qo = 

Y tl, ta  
- 5-50. 
and t,. 
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Measurements of Ea were very difficult because of the extremely small size of this 
hysteresis loop and the very long equilibration time near R,. The result obtained at 
Q, = - 7-83 corresponds to a change in temperature difference of only about 4 pK, 
or 0.16 yo of AT,. For this point we show error bars in figure 10 corresponding to an 
uncertainty of about f 1 pK. This uncertainty is due to long-term experimental 
drifts caused by the extremely slow process (of order one week to complete the hystere- 
sis loop once) of taking equilibrium data so close to R,. Generally, the data for Ea are 
somewhat lower (by about a factor of 2) than the prediction for the infinite system. 
We believe that this difference may be in part attributable to our lateral boundaries. 
It is interesting to note from (3.3) that Ea depends only upon RiyBo), whereas Eb and E, 
involve also the experimentally unknown parameter La. We used our experimental 
value of the slope of N ( R )  for hexagons (figure 6) to estimate RP) for the finite system, 
and calculated Ea from (3 .3a)  with this experimental RF). The result is the dashed 
line in figure 10, and is in much better agreement with the data. Of course, we consider 
this procedure to be only a very crude estimate of the effect of lateral boundaries. A 
comparison with a calculation for a finite system would be most interesting. 

5. Penetrative convection : parameters, predictions and previous 
experiments 

In the case of penetrative convection, for which ap < 0 in a fraction of the fluid, 
it is customaryt to modify the definition of the Rayleigh number so that it refers only 
to the unstable fluid layer below the density maximum, i.e. 

R,, = ga9AT18/Kv, (5.1) 

where, in the absence of convection, l is the depth of the umtable fluid layer, 

is the temperature difference across the unstable fluid layer, and ap, K and v me deter- 
mined at the static temperature of the mid-plane of the unstccble layer. 

d/Z ( B  2 1) M a memure of 
the extent of the penetmtion. If the thermal conductivity is temperature independent, 
this is equivalent to 

and for convenience we extend the definition of B into the range B < 1 by using (5.2). 
Once convection begins, the convective flow penetrates well into the stably 

stratified layer. We may understand this qualitatively by reference to figure 12. 
Before convection is initiated the fluid layer between temperatures To and some 
T < To (defined such that p(T’) = p(T,)) hm a higher density than the fluid at tem- 
perature TI at the bottom of the container. Thus, when convective mixing is initiated, 

t Several definitions of the Rayleigh number appropriate for penetrative convection have been 
suggested. For example, Sun, Chi & Yen (1969) proposed a rather complicated definition of R, 
baaed on a parametrization of the fluid density with a third-order polynomial. In this form they 
are able to predict end experimentally verify Re for the ice-water system over a range of pene- 
tration parameters. However, there appears to be no adventage to the use of their definition 
after the onset of convection. Definitions of R which seem most appropriate once convection 
ha9 begun depend on empirioal determinations of the depth of the convecting layer (e.g. Moore 
& W e k  1973; Muaman 1968) which changes very rapidly with heat input q for AT near AT,. 

AT = Ti - To 

Following Veronis (1962), we use the parameter B 

9 = Vi-Ta)/(Ti-To), (5.2) 
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FIQURE 12. Vertical profiles of mean fluid density p in the static case 
(conduction only) and with penetrative convection. 

this global instability manifests itself by deep penetration of the convective flow into 
the locally stable layer between To and T .  Dissipation due to viscous and thermal 
diffusion seems to limit penetration to somewhat less than the thickness of this layer 
(see, for example, Moore Q Weiss 1973). At larger Rayleigh numbers turbulent con- 
vective mixing maintains the horizontally averaged temperature nearly constant 
over a significant fraction of the fluid height, while a large temperature gradient spans 
the narrow conduction layer at the top of the fluid (Furumoto & Rooth 1961 ; Adrian 
1976; M p p  et al. 1970; Townsend 1964; Deardorff, Willis & Lilly 1969). 

By extension of the theory relevant to moderate Q(B < 1) it is expected that 
penetrative convection will be initiated with three-dimensional flow for which there 
is hysteresis in the Rayleigh number at R,. The ice-water experiments of Dubois et al. 
(1978) correspond to B = 1. They do find three-dimensional convection, but without 
sufficient resolution near R, to  observe the hysteresis. Yen (1968) reported experi- 
ments in a cylindrical container initially filled with ice and heated from below. When 
sufficient ice had melted for penetrative convection to begin, a rectangular array of 
hemispherical depressions formed in the surface of the ice. With increasing convection 
these depressions grew in diameter and became irregular in shape. When this experi- 
ment waa inverted so that melting ice formed the lower fluid boundary (Yen & Galea 
1969), a concentric pattern of uniformly spaced rings first formed in the ice, followed 
by the appearance of the hemispherical cells. Tankin & Farhadieh (1971) reported 
experiments with ice and water in a rectangular cell for which they observed two- 
dimensional rolls at the onset of convection; however, it appears that thermal boun- 
dary conditions at the walls influenced their results, and again there waa no indication 
of hysteresis at R,. 
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Preliminary measurements similar to ours on penetrative convection using liquid 
helium have been reported by Ahlers (1975). Those results were obtained, however, 
with a cell of less uniform height than the present one. For that reaaon, N ( R )  near R, 
was appreciably rounded. This rounding prevented the observation of the hysteretic 
transitions near R,.t 

Theoretical models of penetrative convection (in ice and water) (Veronis 1963; 
Musman 1968; Moore & W e b  1973) also predict a finita-amplitude instability below 
B,, implying hysteresis in R at onset of convection; however, these models are not 
suitable for quantitative comparison with the experiments to be reported here. 
Musman and Moore & Weiss treat only the case of free-free boundary conditions and 
convective transport in a pattern of two-dimensional rolls, while the calculations of 
Veronis (which do consider the case of rigid boundaries and hexagonal convection 
cells) would need to be extended to higher order to permit quantitative comparison. 

6. Results for penetrative convection 
In  this section we present the results of our measurements in the range IQl > 6-63 

where ap < 0 in a fiaction of the cell. The parameter Q is not very suitable to describe 
the extent of penetrative convection because IQI diverges when ap = 0 in the mid- 
plane of the cell. In that case, R as defined by (2.1) and evaluated at Tm vanishes and 
likewise is not meaningful parameter. We shall therefore express our results in terms 
ofR, (equation (6.1)) and B (equation (5.2)). In  addition, we shall use also the primary 
measured parameter AT/AT, because the definition (5.1) of R, may turn out to be 
inconvenient from the viewpoint of future theoretical developments. 

We have already presented some results for mildly penetrative convection in $ 4  
(see figures 8-10). Nusselt-number measurements in the range of strong penetration 
are illustrated in figure 13 for B = 2-29 as a function of A T / A q .  The insert in the 
figure shows the same data aa a function of (R/Rc),. 

In  figure 14 we show results for the critical value R, of the Rayleigh number R, 
defined by (5.1). We have normalized R, to unity at B = 1 (for B = 1, R, and €2 as 
given by (5.1) and (2.1) became identical) by dividing by R,(B = 1) = 1550 (see figure 
4 a) because our absolute Rayleigh numbers are not very accurate. Similarly-normalized 
calculations by Veronis (1962) are shown by the solid line. Those theoretical results 
are based upon a linear theory. They agree with the data for B 5 1.8, and are some- 
what high for larger 9. Theoretical results baaed on a nonlinear calculation (Musman 
1968) are available only for f r e s h  boundary conditions and cannot be compared 
directly with our data. But, for free-free boundaries, the nonlinear calculation of Bc 
lies below the linear calculation, suggesting that a nonlinear theory with rigid-rigid 
boundaries would lead to improved agreement with the data in figure 14 for 9’ > 1.8. 

In  the range of strong penetration, we have not explored R, and Rb as extensively 
as R,, primarily because time-dependent behaviour of the fluid flow (see 8 7 below) 
made these measurements difficult and possibly unreliable. The example shown in 
figure 13, obtained in a range of B where the flow was relatively steady, suggests that 

t The data of Ahlers (1976) revealed an increase with increaaing 9 of the initial dope of 
N(AT /ATc). It WEW not realized at the time that N(R/R,),  with R determined at T,, remained 
independent of 9 for R near Rc. The interpretation of those data in t e r n  of a tricritioal point 
is erroneous and should be disregarded. 
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the size of the hysteresis loop between R, and Rb becomes relatively small at large 9. 
Examples of our detailed measurements of the hysteresis loop between R, and R, 

have already been shown in figure 9. In  figure 15 we give all our results for the size of this 
loop as a function of 9. That size is expressed in three different ways. The delinition 
E, = 1 - R,/Rc was used already in figure 10, and is meaningful only to the left of the 
vertical line at B = 2 in figure 15 because R (equation (2)) vanishes there. Results 
for Za( 9) are shown as solid circles. We also show the results of our measurements in 
terms of Eau = (1 - Ra/Rc)u, i.e. in terms of parameters evaluated for the unstable 
layer only. Those are the open circles in the figure. Finally, we also give as solid 
squares ZaT = 1 - ATa/AT,, which relates most closely to the primary measured 
quantities. 

For large penetration (9’ 2 2), quasi-static changes in the heat current q for A T  
near AT, resulted in a series of hysteretic but reproducible transitions closely spaced 
in AT: figure 10 shows an example. Those data correspond to the conduction state, 
and the three-dimensional flow state between R, and R, (see figure 2). They start on 
the left of the figure in the conducting state, but very close to AT,. A small step in q 
yields A T  > AT,. Pure conduction is unstable there and the convecting hexagon 
state forms, accompanied by the dramatic drop in AT. The knee at A in the figure 
suggests the existence of an intermediate state. Similar effects have been observed at 
higher 9, sometimes with more than one knee. It is often possible to find a stable 

FIGURE 13. Nusselt number aa a function of reduced temperature difference AT/ATc. 9 = 2.29. 
Near N = 1 clomly spaced data points are plotted as small dots to reveal some of the structure 
of the flow evolution. The tiny hysteresis loop at the onset of convection is shown greatly 
expanded in figure 9 (c). Since the usual Rayleigh number is meaninglw for B > 2, Nusselt 
numbers aa a function of reduced Rayleigh number (RIR,),, based on the unstable fluid layer 
are shown in the inset. The diagonal barn indicate the range of excursions for time-dependent 
convection. 
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Penetration parameter 9 

FIQURE 14. Critical Rayleigh numbers Re, t~ a function of penetration parameter 9. The solid 
line is based on the linear theory of Veronis (1983) ; the values of Re, were normalized by 
Re,(B = 1) to faoilitate cornperison. 
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FIQURE 16. Size of the hysteresis loop at the onset of convection as a function of the penetration 
p a m e t e r B .  0. 6, = (l-R,,/Re); 0,  E,, = (l-Ro/Re)u; M. E,T = (l-AT,/ATe).  
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region for such knees by choosing a different experimental path (decreasing q for 
instance). Beyond the minimum in figure 16, six small steps in q each yield a stable 
value of AT; but the seventh causes the system to enter an unstable region and 
results in a decay to a state of greater heat transport. After four additional steps, 
this decay repeats itself to yet another state. Values of Nusselt numbers as a function 
of AT/AT, corresponding to the data in figure 16 (and additional measurements for 
larger and smaller q)  are shown in figure 17. The multistability is clearly apparent. 

We believe that the existence of distinct flow states is consistent with three- 
dimensional convection in & laterally finite system. One expects that the lateral size 
of a convecting cell is approximately equal to the height 1 of the unstable fluid layer. 
This criterion determines the number n of cells which initially forms in the finite 
geometry. As q increases, the convection will penetrate into the upper fluid region, and 
the effective height of the fluid layer will increase. Thus, there will also be a tendency 
for the lateral size of the convecting cells to increase; but in the finite system this can 
occur only in discrete increments by the expulsion of one cell from the system, reducing 
n to n- 1. Our interpretation thus is that successive states in figure 17 correspond to 
decreasing integer values of n. This interpretation suggests that the step size AN 
between successive states should decrease with increasing 9 because large B corres- 
ponds to small 1 and thus to a large initial value of n. A reduction of n to n - 1 is then 
a relatively smaller change at  large 9. This is indeed the case, aa illustrated in figure 
18, where AN is shown as a function of 9. The step size at constant 9 should also 
depend upon the aspect ratio L of the cell, and should vanish as L diverges; but we 
have no data on the aspect-ratio dependence. 

Finally, we point out that in the case of mildly penetrative convection the data 
for N ( R )  near R, no longer agree quantitatively with the theoretical prediction for 

FIGURE 16. Time dependence of AT while the heat current q is monotonically increased in small 
steps. Time is meamred in unite of the thermal diffusion time t ,  = 311 s. 9’ = 2.20. 
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FIGURE 17. Nusielt numbere aa a function of reduced temperature difference AT/AT, for the 
data of figure 16. 9 = 2.20. The dot-dashed lines indicate irreversible (hysteretic) transitions. 

f 

Penetration parameter 9 
FIGURE 18. Spacing in Nusselt number between stable states 

as a function of penetration parameter 9. 

non-OB systems as given by (7.8) of Busse (1967) if the experimental value Rg0) for 
our near-OB case (see figure 6) is used in the theory. This is illustrated for Qc = - 11.68 
in figure 19, where the solid line corresponds to the theory, but with RP) adjusted to 
fit the data in figure 6. The data points are some of those shown already in figure 8. 
Of course, we would not necessarily expect agreement with the theory for such large 
values of 1 Qcl. 
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FIGUBJJ 19. Nuseelt numbers aa a function of R/Rc for &, = - 11.68. 9 = 1-29. The solid line 
ie the prediction of Busse (1967), with a parameter adjusted to fit the data in figure 6. For 
valuea of I&,I aa large as 11.68, the theory no longer agrees quantitatively with the measlurements. 

7. Time-dependent flow 
A detailed study of time-dependent fluid-flow states was not the main objective of 

this work; but some observations made during the course of the measurements are 
worth reporting. In the nearly Boussinesq caae, non-periodic time-dependent beha- 
viour becomes obvious near R/Rc - 2 (Ahlers 1974; Ahlers & Behringer 1978; Ahlers 
t Walden 1980). For non-OB and penetrative convection time-dependent flow is 
readily observable much closer to R,. The diagonal bars attached to some of the data 
points in figures 8 and 13 indicate the typical range of excursions for those particular 
cases. t 

In figure 20 we show as solid squares the smallest values Nt of the Nusselt number N 
at which time-dependent behaviour has been observed, as a function of 8. We show 
Nt rather than the corresponding value of the Rayleigh number because of the ambi- 
guity in the definition of R for large 9; but the data in figures 8,9,11 and 13 give some 
indication of the relation between N and R. In general, time-dependent flows were 
non-periodic with characteristic (mean) frequencies between 0*02/t, and 2/t, (t, = 310 
sec is the vertical thermal diffusion time d 2 / ~ ) .  

For 1-5 ;5 B 5 2, R is less than R, at the onset of time dependence, and no stationazy 
fluid flow waa ever observed. For larger 8, where the multistability illustrated in 
figures 16-18 waa observed, there is a range of N for which flow is steady near the 
centre of the existence range of a particular flow state, but time dependent near the 

t Note that in the N-R plane the excursions occur along non-vertical lines because of the 
constraint of constant q. 
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FIGURE 20. Domains of time-dependent and time-independent flow. The smallest Nusselt 
number Nt for which time-dependent flow was observed aa a function of penetration parameter 
is indioated by the solid symbols. The open symbols indicate the largest values of the Nusselt 
number for which time-independent flow was observed in a region of multistability. 

edges. We have indicated in figure 20 the highest values of N at which ateudy flow was 
ever observed by the open squares. 

Although, in most cases, the observed time dependence was non-periodic, narrow 
ranges of periodic behaviour were encountered also on occasion. An example is 
B = 0.92 and 1.3 5 N 5 1.42, where the frequency waa about 0.4/t,, and mildly 
dependent upon R. In  that catm, the fluid motion was non-periodic for 1-2 5 N 5 1.3. 
The systematics of time-dependent states is clearly quite complicated for non-OB 
systems, and may well involve several mechanisms. 

8. Summary 
Studies of fluid convection in a cylindrical cell of aspect ratio L = 4-72 have been 

presented which illustrate the effects of large temperature variations of the fluid 
parameters. These variations were caused primarily by the temperature dependence 
of the thermal expansion coefficient ap. By adjusting the temperature at the top of 
the cell, a wide range for the temperature dependence of ap, including negative values 
near the top of the cell, could be achieved. Some of our results have been compared 
with the theoretical predictions by Busse (1967). 
Our measurements suggest that the critical Rayleigh number R, is slightly depen- 

dent upon the extent Q of departures from the Oberbeck-Boussinesq (OB) approxi- 
mation (which assumes temperature-independent properties). But we cannot entirely 
rule out the possibility that this &-dependence of R, is attributable to systematic 
errors in the fluid properties. The theory for an infinite system predicts an R, which 
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to first order is independent of &. We find that, within our experimental error, the 
initial slope of the Nusselt number is independent of &, consistent with the theory. 
The theory predicts the existence of an inverted bifurcation at R, associated with the 
convective flow of hexagonal symmetry. This bifurcation was observed in all caaes 
for which experimental resolution was expected to be sufficient to detect it. The 
measured width Ea of the associated hysteresis loop was about 60 yo of that predicted 
by Busse. However, measurements of i f a  were possible only in the region of penetrative 
convection where departures from the OB approximation are large, and where quan- 
titative agreement with Busse’s theory is least likely. In  addition, our data may differ 
somewhat from the theory because our system is finite whereas the theory is for a 
laterally infinite system. 

The experimentally determined values of Eb for the bifurcation from hexagonal flow 
to rolls were about 85% of the theoretical values in the region of non-penetrative 
convection. Corresponding values of ifr for the transition from convective rolls to 
hexagonal flow are not resolved in the experimental data (for non-penetrative con- 
vection), but upper limits on the experimental Er put its expected values near or below 
the values predicted by Busse’s theory. 

Several phenomena observed in penetrative convection with penetration parameter 
8 3 have not been previously observed or predicted by theory. The amplitude Ea 
of hysteresis at B, grows considerably as B increases toward 2, then declines again at 
larger values of 8. For B > 2 a series of stable states closely spaced in Nusselt number 
is observed near R,. Transitions between states are suggestive of three-dimensional 
cells being added to or removed from the fluid volume to optimize convective transport 
in the presence of lateral bomdaries. The spacing between states decreases with in- 
creasing 8, which should be a key in the formulation of a quantitative theory. 

As the penetration parameter B increases beyond 1, the Nusselt number for the 
onset of time-dependent flow drops sharply until all flow is time-dependent at the 
onset of convection. However, for still greater penetration there is a region of relative 
stability in which the presence or absence of time dependence is influenced by the 
proximity of the system to a bifurcation between stable states. 

We have benefited greatly throughout this work from discussions with P. C. 
Hohenberg and M. C. Cross. The work of Guenter Ahlers was supported in part by 
the National Science Foundation under Grant no. NSF DMR79-23289. 
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